Phenolics and Antioxidant Activity of American and Hybrid Hazelnuts

Michael Demchik, Jason Fischbach, Justin Hall

Thomas Jefferson

 "...the greatest service which can be rendered any country is to add an useful plant to its culture; especially, a bread grain; next in value to bread is oil."

Why we asked the question?

- Flavor profile work found some with mild bitterness and astringency
- Much of what causes both factors may be positively related to human health

Antioxidants and human health

- Some research suggests good for heart health
- May counteract other negative factors in food
- Preserve food quality

Current Examples

 Resveratrol from grapes, mulberries and sprouted peanuts

 Rosemary/sage extract (carnosic acid)toothpaste etc.

Antioxidants in Food

- Foods contain them naturally
- Processed foods often use BHA, BHT, TBHQ

Why this is of interest?

- Potential alternative preservative
- Maybe for livestock feed or human foods

Factor	Cluster1	Cluster2
Aroma intensity	4.20	3.16
Roast/nutty	4.32	4.10
Woody	3.48	3.21
Almond-like	1.20	1.25
Popcorn / roasty	1.25	1.03
Oily	1.07	1.04
Fruity	1.64	1.62
Cleaner / soapy	0.10	0.66
Basic sweet	2.57	2.67
Basic sour	0.93	0.88
Basic bitter	2.12	1.73
Nutty AT	3.64	3.40
Astringent AT	3.60	3.38
Bitter AT	2.13	1.75

From
Agroforestry
Systems article

...continued

- Reducing bitterness dominates much of the history of plant breeding
- European hazelnut skins have a lot of phenolics
- They are often powerful antioxidants
- Possible natural food preservative as well as health promoting

Objective

- To determine the levels of phenolics (American hazelnut and hybrids)
- Test these extracts for antioxidant potential

Methods

- Follow established methods to be able to compare to European hazelnuts
- Note: this procedure is simplified a bit for clarity...main steps are listed, minor stuff is ignored

Sample Collection

- 5 American hazelnut selections
- 8 hybrid selection
- Nuts, shells, involucres, leaves

Process

- Grind
- Remove fat (hexane)
- Air-dry results

Extract

- Use alcohol and water mixture
- Vacuum and freeze-dry results
- This is the phenolics and other stuff

Testing Phenolics

- Add a reagent Folin-Ciocalteu phenol reagent
- This turns blue proportional to the phenols in solution
- Test with a spectrophotometer
- Compare to catechin

Antioxidant Activity

- Take more extract and dissolve (phosphate buffered saline)
- Filter
- Standardize to 200 ppm
- Add hydrogen peroxide
- Test how much of the peroxide is consumed

- Quite high phenolic level in the waste products (co-products)
- Less in the nuts
- Surprisingly, similar to European hazelnuts

		Nutmeat	Shell	Leaf	Involucre	
		mg CE/g				
Total Phenolics	Hybrid	18.7(3.0)	162.0(20.1)	234.9(22.1)	160.8(15.7)	
	Wild	23.5(3.9)	140.8(11.1)	207.7(26.2)	155.7(18.6)	
	Proportion hydrogen peroxide consumed					
Antioxidant	Hybrid	0.63(0.02)	0.81(0.01)	0.95(0.01)	0.97(0.01)	
	Wild	0.67(0.03)	0.79(0.01)	0.98(0.01)	0.97(0.01)	

		Nutmeat	Shell	Leaf	Involucre	
		mg CE/g				
Total Phenolics	Hybrid	18.7(3.0)	162.0(20.1)	234.9(22.1)	160.8(15.7)	
	Wild	23.5(3.9)	140.8(11.1)	207.7(26.2)	155.7(18.6)	
		Proportion hydrogen peroxide consumed				
Antioxidant	Hybrid	0.63(0.02	0.81(0.01)	0.95(0.01)	0.97(0.01)	
	Wild	0.67(0.03)	0.79(0.01)	0.98(0.01)	0.97(0.01)	

		Nutmeat	Shell	Leaf	Involucre
		mg CE/g			
Total Phenolics	Hybrid	18.7(3.0)	162.0(20.1)	234.9(22.1)	160.8(15.7)
	Wild	23.5(3.9)	140.8(11.1)	207.7(26.2)	155.7(18.6)
		Proportion hydrogen peroxide consumed			
Antioxidant	Hybrid	0.63(0.02)	0.81(0.01)	0.95(0.01)	0.97(0.01)
	Wild	0.67(0.03)	0.79(0.01)	0.98(0.01)	0.97(0.01)

		Nutmeat	Shell	Leaf	Involucre
		mg CE/g			
Total Phenolics	Hybrid	18.7(3.0)	162.0(20.1)	234.9(22.1)	160.8(15.7)
	Wild	23.5(3.9)	140.8(11.1)	207.7(26.2)	155.7(18.6)
		Proportion hydrogen peroxide consumed			
Antioxidant	Hybrid	0.63(0.02)	0.81(0.01)	0.95(0.01)	0.97(0.01)
	Wild	0.67(0.03)	0.79(0.01)	0.98(0.01)	0.97(0.01)

Overall

- Leaves are highest, involucre and shell similar, nuts are low
- These levels are 50-100 times those found in ag wastes (potato skins, sugarbeet pulp, sesame cake)
- Phenolics in leaves and involucre are strongest antioxidants, shells are next, nuts are least

Conclusions

- There are probable co-products in the waste products of hazelnut production
- Would require more research
 - What are the specific phenolics
 - To determine how they would perform and safety in food/feed

Acknowledgements

- Kurt Tibbals
- Louis Fischbach
- Matthew Nortunen
- Sophie Demchik
- Wisconsin Institute for Sustainable Technology
- NCR-SARE Research and Education grant, project number: LNC 15-367.

